Grid-Independent Construction of Multistep Methods
نویسندگان
چکیده
منابع مشابه
Grid-independent Construction of Multistep Methods
A new polynomial formulation of variable step size linear multistep methods is presented, where each k-step method is characterized by a fixed set of k− 1 or k parameters. This construction includes all methods of maximal order (p = k for stiff, and p = k+1 for nonstiff problems). Supporting time step adaptivity by construction, the new formulation is not based on extending classical fixed step...
متن کاملMultistep Methods
All of the numerical methods that we have developed for solving initial value problems are onestep methods, because they only use information about the solution at time tn to approximate the solution at time tn+1. As n increases, that means that there are additional values of the solution, at previous times, that could be helpful, but are unused. Multistep methods are time-stepping methods that...
متن کاملLinear Multistep Methods page 1 Linear Multistep Methods
page 1 Linear Multistep Methods Note: The authoritative reference for the material on convergence is the book by Peter Henrici, Discrete Variable Methods in Ordinary Differential Equations , Wiley, 1962. The best reference on absolute stability is the book by Jack Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, 1991. We consider the Initial Value Problem (IVP) y′ = f(x, y),...
متن کاملProbabilistic Linear Multistep Methods
We present a derivation and theoretical investigation of the Adams-Bashforth and Adams-Moulton family of linear multistep methods for solving ordinary differential equations, starting from a Gaussian process (GP) framework. In the limit, this formulation coincides with the classical deterministic methods, which have been used as higher-order initial value problem solvers for over a century. Fur...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Mathematics
سال: 2017
ISSN: 0254-9409,1991-7139
DOI: 10.4208/jcm.1611-m2015-0404